怎樣學(xué)好高三函數(shù)
來(lái)源:好上學(xué) ??時(shí)間:2023-07-21
學(xué)習(xí)函數(shù)要重點(diǎn)解決好四個(gè)問(wèn)題:準(zhǔn)確深刻地理解函數(shù)的有關(guān)概念;揭示并認(rèn)識(shí)函數(shù)與其他數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系;把握數(shù)形結(jié)合的特征和方法;認(rèn)識(shí)函數(shù)思想的實(shí)質(zhì),強(qiáng)化應(yīng)用意識(shí)
學(xué)習(xí)函數(shù)要重點(diǎn)解決好四個(gè)問(wèn)題:準(zhǔn)確深刻地理解函數(shù)的有關(guān)概念;揭示并認(rèn)識(shí)函數(shù)與其他數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系;把握數(shù)形結(jié)合的特征和方法;認(rèn)識(shí)函數(shù)思想的實(shí)質(zhì),強(qiáng)化應(yīng)用意識(shí)。 一、準(zhǔn)確、深刻理解函數(shù)的有關(guān)概念 概念是數(shù)學(xué)的基礎(chǔ),而函數(shù)的概念是數(shù)學(xué)中最主要的概念之一,近十年來(lái),高考試題中始終貫穿著函數(shù)及其性質(zhì)這條主線。想要學(xué)好函數(shù)就必須先把概念弄透徹,這里說(shuō)的弄懂概念并非指把概念背的滾瓜爛熟,這在高中數(shù)學(xué)是行不通的,概念只是最表面的語(yǔ)言描述,用自己的方式理解就行,并不需要原封不動(dòng)的背下來(lái),重要的是要弄懂概念更深層次表達(dá)的意思。 二、揭示并認(rèn)識(shí)函數(shù)與其他數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系。函數(shù)是研究變量及相互聯(lián)系的數(shù)學(xué)概念,是變量數(shù)學(xué)的基礎(chǔ),利用函數(shù)觀點(diǎn)可以從較高的角度處理式、方程、不等式、數(shù)列、曲線與方程等內(nèi)容。在利用函數(shù)和方程的思想進(jìn)行思維中,動(dòng)與靜、變量與常量如此生動(dòng)的辯證統(tǒng)一,函數(shù)思維實(shí)際上是辯證思維的一種特殊表現(xiàn)形式。 所謂函數(shù)觀點(diǎn),實(shí)質(zhì)是將問(wèn)題放到動(dòng)態(tài)背景上去加以考慮。高考試題主要涉及5個(gè)方面: 原始意義上的函數(shù)問(wèn)題; 方程、不等式作為函數(shù)性質(zhì)解決; 數(shù)列作為特殊的函數(shù)成為高考熱點(diǎn); 輔助函數(shù)法; ?。?)*與映射,作為基本語(yǔ)言和工具出現(xiàn)在試題中。 三、把握數(shù)形結(jié)合的特征和方法 “數(shù)形結(jié)合”在數(shù)學(xué)上是一種非常重要的方法,必須熟練運(yùn)用,很多難題一旦結(jié)合圖像解決,就會(huì)變得簡(jiǎn)單得多。函數(shù)圖象的幾何特征與函數(shù)性質(zhì)的數(shù)量特征緊密結(jié)合,有效地揭示了各類函數(shù)和定義域、值域、單調(diào)性、奇偶性、周期性等基本屬性,體現(xiàn)了數(shù)形結(jié)合的特征與方法,為此,既要從定形、定性、定理、定位各方面精確地觀察圖形、繪制圖形,又要熟練地掌握函數(shù)圖象的平移變換、對(duì)稱變換。 四、認(rèn)識(shí)函數(shù)思想的實(shí)質(zhì),強(qiáng)化應(yīng)用意識(shí) 函數(shù)思想的實(shí)質(zhì)就是用聯(lián)系與變化的觀點(diǎn)提出數(shù)學(xué)對(duì)象,抽象數(shù)量特征,建立函數(shù)關(guān)系,求得問(wèn)題的解決??v觀近幾年高考題,考查函數(shù)思想方法尤其是應(yīng)用題力度加大,因此一定要認(rèn)識(shí)函數(shù)思想實(shí)質(zhì),強(qiáng)化應(yīng)用意識(shí)。
以上就是好上學(xué)為大家?guī)?lái)的怎樣學(xué)好高三函數(shù),希望能幫助到廣大考生!標(biāo)簽:怎樣學(xué)好高三函數(shù)??