好上學(xué),職校招生與學(xué)歷提升信息網(wǎng)。

分站導(dǎo)航

熱點(diǎn)關(guān)注

好上學(xué)在線報(bào)名

在線咨詢

8:00-22:00

當(dāng)前位置:

好上學(xué)

>

職校資訊

>

招生要求

高中數(shù)學(xué)公式大全,高中數(shù)學(xué)公式總結(jié)

來源:好上學(xué) ??時(shí)間:2023-07-29

高考是一個(gè)是一場千軍萬馬過獨(dú)木橋的戰(zhàn)役。面對高考,考生總是有很多困惑,什么時(shí)候開始報(bào)名?高考體檢對報(bào)考專業(yè)有什么影響?什么時(shí)候填報(bào)志愿?怎么填報(bào)志愿?等等,為了幫助考生解惑,好上學(xué)整理了高中數(shù)學(xué)公式大全,高中數(shù)學(xué)公式總結(jié)相關(guān)信息,供考生參考,一起來看一下吧
高中數(shù)學(xué)公式大全,高中數(shù)學(xué)公式總結(jié)

  高中數(shù)學(xué)公式大全

  拋物線:y = ax *+ bx + c

  就是y等于ax 的平方加上 bx再加上 c

  a > 0時(shí)開口向上

  a < 0時(shí)開口向下

  c = 0時(shí)拋物線經(jīng)過原點(diǎn)

  b = 0時(shí)拋物線對稱軸為y軸

  還有頂點(diǎn)式y(tǒng) = a(x+h)* + k

  就是y等于a乘以(x+h)的平方+k

  -h是頂點(diǎn)坐標(biāo)的x

  k是頂點(diǎn)坐標(biāo)的y

  一般用于求最大值與最小值

  拋物線標(biāo)準(zhǔn)方程:y^2=2px

  它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0) 準(zhǔn)線方程為x=-p/2

  由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py

  關(guān)于圓的公式

  體積=4/3*π*r^3

  面積=π*r^2

  周長=2πr

  圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

  圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  (一)橢圓周長計(jì)算公式

  橢圓周長公式:L=2πb+4(a-b)

  橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。

  (二)橢圓面積計(jì)算公式

  橢圓面積公式: S=πab

  橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

  以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。

  橢圓形物體 體積計(jì)算公式橢圓 的 長半徑*短半徑*PAI*高

  三角函數(shù)

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  四倍角公式:

  sin4A=-4*(cosA*sinA*(2*sinA^2-1))

  cos4A=1+(-8*cosA^2+8*cosA^4)

  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

  五倍角公式:

  sin5A=16sinA^5-20sinA^3+5sinA

  cos5A=16cosA^5-20cosA^3+5cosA

  tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

  六倍角公式:

  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

  cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))

  tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

  七倍角公式:

  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

  cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

  八倍角公式:

  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

  cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

  tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

  九倍角公式:

  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

  cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

  tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

  十倍角公式:

  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

  cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

  tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

  萬能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

  某些數(shù)列前n項(xiàng)和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

  乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解

  -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系 x1+x2=-b/a x1*x2=c/a 注:韋達(dá)定理

  判別式 b2-4a=0 注:方程有相等的兩實(shí)根

  b2-4ac>0 注:方程有兩個(gè)不相等的個(gè)實(shí)根

  b2-4ac<0 注:方程有共軛復(fù)數(shù)根

  立體圖形及平面圖形的公式

  圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

  圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h

  正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h'

  圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

  圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l

  弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

  斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長

  柱體體積公式 V=s*h 圓柱體 V=pi*r2h

  圖形周長 面積 體積公式

  長方形的周長=(長+寬)×2

  正方形的周長=邊長×4

  長方形的面積=長×寬

  正方形的面積=邊長×邊長

  三角形的面積

  已知三角形底a,高h(yuǎn),則S=ah/2

  已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)

  和:(a+b+c)*(a+b-c)*1/4

  已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2

  設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r

  則三角形面積=(a+b+c)r/2

  設(shè)三角形三邊分別為a、b、c,外接圓半徑為r

  則三角形面積=abc/4r

  已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)

  | a b 1 |

  S△=1/2 * | c d 1 |

  | e f 1 |

  | a b 1 |

  | c d 1 | 為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC

  | e f 1 |

  選區(qū)取最好按逆時(shí)針順序從右上角開始取,因?yàn)檫@樣取得出的結(jié)果一般都為正值,如果不按這個(gè)規(guī)則取,可能會得到負(fù)值,但不要緊,只要取絕對值就可以了,不會影響三角形面積的大小!

  秦九韶三角形中線面積公式

  S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

  其中Ma,Mb,Mc為三角形的中線長.

  平行四邊形的面積=底×高

  梯形的面積=(上底+下底)×高÷2

  直徑=半徑×2 半徑=直徑÷2

  圓的周長=圓周率×直徑=

  圓周率×半徑×2

  圓的面積=圓周率×半徑×半徑

  長方體的表面積=

  (長×寬+長×高+寬×高)×2

  長方體的體積 =長×寬×高

  正方體的表面積=棱長×棱長×6

  正方體的體積=棱長×棱長×棱長

  圓柱的側(cè)面積=底面圓的周長×高

  圓柱的表面積=上下底面面積+側(cè)面積

  圓柱的體積=底面積×高

  圓錐的體積=底面積×高÷3

  長方體(正方體、圓柱體)

  的體積=底面積×高

  平面圖形

  名稱 符號 周長C和面積S

  正方形 a—邊長 C=4a

  S=a2

  長方形 a和b-邊長 C=2(a+b)

  S=ab

  三角形 a,b,c-三邊長

  h-a邊上的高

  s-周長的一半

  A,B,C-內(nèi)角

  其中s=(a+b+c)/2 S=ah/2

  =ab/2?sinC

  =[s(s-a)(s-b)(s-c)]1/2

  =a2sinBsinC/(2sinA)

  推論及定理

  1、過兩點(diǎn)有且只有一條直線

  2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等

  4、同角或等角的余角相等

  5、過一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理 三角形兩邊的和大于第三邊

  16、推論 三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°

  18、推論1 直角三角形的兩個(gè)銳角互余

  19、推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20、推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21、全等三角形的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(sas) 有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

  23、角邊角公理( asa)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等

  24、推論(aas) 有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等

  25、邊邊邊公理(sss) 有三邊對應(yīng)相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

  27、定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的*

  30、等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角)

  31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34、等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35、推論1 三個(gè)角都相等的三角形是等邊三角形

  36、推論2 有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的*

  42、定理1 關(guān)于某條直線對稱的兩個(gè)圖形是全等形

  43、定理2 如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

  45、逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

  46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形

  48、定理 四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論 任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1 平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

  54、推論 夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

  56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2 矩形的對角線相等

  62、矩形判定定理1 有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2 對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1 菱形的四條邊都相等

  65、菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即s=(a×b)÷2

  67、菱形判定定理1 四邊都相等的四邊形是菱形

  68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1 關(guān)于中心對稱的兩個(gè)圖形是全等的

  72、定理2 關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱

  74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80、推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h

  83、(1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87、推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(asa)

  92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93、判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas)

  94、判定定理3 三邊對應(yīng)成比例,兩三角形相似(sss)

  95、定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96、性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2 相似三角形周長的比等于相似比

  98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101、圓是定點(diǎn)的距離等于定長的點(diǎn)的*

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的*

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的*

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

  106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

 ?、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2 圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116、定理 一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  120、定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

  121、①直線l和⊙o相交 d

  ②直線l和⊙o相切 d=r

 ?、壑本€l和⊙o相離 d>r

  122、切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  124、推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  125、推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理 弦切角等于它所夾的弧對的圓周角

  129、推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130、相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

  131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132、切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

  133、推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

  134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135、①兩圓外離 d>r+r ②兩圓外切 d=r+r

 ?、蹆蓤A相交 r-rr)

 ?、軆蓤A內(nèi)切 d=r-r(r>r) ⑤兩圓內(nèi)含dr)

  136、定理 相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理 把圓分成n(n≥3):

  ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 ?、平?jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138、定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  141、正n邊形的面積sn=pnrn/2 p表示正n邊形的周長

  142、正三角形面積√3a/4 a表示邊長

  143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計(jì)算公式:l=nπr/180

  145、扇形面積公式:s扇形=nπr2/360=lr/2

  146、內(nèi)公切線長= d-(r-r) 外公切線長= d-(r+r)

  147、等腰三角形的兩個(gè)底腳相等

  148、等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合

  149、如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等

  150、三條邊都相等的三角形叫做等邊三角形

  以上就是高中數(shù)學(xué)公式匯總,希望對你有所幫助。

今天最后推薦的在線輔導(dǎo)平臺是專注教育——中小學(xué)網(wǎng)上*輔導(dǎo),全國重點(diǎn)中學(xué)名師*家教補(bǔ)家教補(bǔ)習(xí)!

以上就是好上學(xué)為大家?guī)淼母咧袛?shù)學(xué)公式大全,高中數(shù)學(xué)公式總結(jié),希望能幫助到廣大考生!

標(biāo)簽:??

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2024 m.mojitoev.com All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號