好上學(xué),職校招生與學(xué)歷提升信息網(wǎng)。

分站導(dǎo)航

熱點(diǎn)關(guān)注

好上學(xué)在線報(bào)名

在線咨詢

8:00-22:00

當(dāng)前位置:

好上學(xué)

>

職校資訊

>

招生要求

初中數(shù)學(xué)知識(shí)框架圖歸納大全

來源:好上學(xué) ??時(shí)間:2023-07-28

高考是一個(gè)是一場千軍萬馬過獨(dú)木橋的戰(zhàn)役。面對高考,考生總是有很多困惑,什么時(shí)候開始報(bào)名?高考體檢對報(bào)考專業(yè)有什么影響?什么時(shí)候填報(bào)志愿?怎么填報(bào)志愿?等等,為了幫助考生解惑,好上學(xué)整理了初中數(shù)學(xué)知識(shí)框架圖歸納大全相關(guān)信息,供考生參考,一起來看一下吧
初中數(shù)學(xué)知識(shí)框架圖歸納大全

小編今天分享的是初中數(shù)學(xué)的知識(shí)框架圖和知識(shí)點(diǎn),按章節(jié)整理的,一篇概全七八九三個(gè)年級數(shù)學(xué)課本的學(xué)習(xí)內(nèi)容,既有條理內(nèi)容又豐富,相信對大家一定有幫助的。

七年級數(shù)學(xué)(上)知識(shí)點(diǎn)

第一章有理數(shù)

一、知識(shí)框架

二.知識(shí)概念

1、有理數(shù)

(1)凡能寫成以下形式的數(shù),如:q/p(p,q為整數(shù)且P≠0)都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。

注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);

(2)有理數(shù)的分類:

2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。

3.相反數(shù):

(1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

(2)相反數(shù)的和為0, a+b=0 , a、b互為相反數(shù)。

4、絕對值:

(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);

注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

(2) 絕對值可表示為

或者:

絕對值的問題經(jīng)常討論。

5.有理數(shù)比大?。海?)正數(shù)的絕對值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.

6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);

若 a≠0,那么它的倒數(shù)是1/a

;若ab=1, a、b互為倒數(shù);若ab=-1, a、b互為負(fù)倒數(shù).

7. 有理數(shù)加法法則:

(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對值相加;

(2)異號(hào)兩數(shù)相加,取絕對值較大的符號(hào),并用較大的絕對值減去較小的絕對值;

(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).

8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).

10 有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.

11 有理數(shù)乘法的運(yùn)算律:

(1)乘法的交換律:ab=ba;

(2)乘法的結(jié)合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),即a/0沒有意義。

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí): (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時(shí): (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位.

17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.

18.混合運(yùn)算法則:先乘方,后乘除,最后加減.

本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問題.

體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

第二章整式的加減

一.知識(shí)框架

二.知識(shí)概念

1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式.

2.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).

3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.

4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。

通過本章學(xué)習(xí),應(yīng)使學(xué)生達(dá)到以下學(xué)習(xí)目標(biāo):

1. 理解并掌握單項(xiàng)式、多項(xiàng)式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

2. 理解同類項(xiàng)概念,掌握合并同類項(xiàng)的方法,掌握去括號(hào)時(shí)符號(hào)的變化規(guī)律,能正確地進(jìn)行同類項(xiàng)的合并和去括號(hào)。在準(zhǔn)確判斷、正確合并同類項(xiàng)的基礎(chǔ)上,進(jìn)行整式的加減運(yùn)算。

3. 理解整式中的字母表示數(shù),整式的加減運(yùn)算建立在數(shù)的運(yùn)算基礎(chǔ)上;理解合并同類項(xiàng)、去括號(hào)的依據(jù)是分配律;理解數(shù)的運(yùn)算律和運(yùn)算性質(zhì)在整式的加減運(yùn)算中仍然成立。

4.能夠分析實(shí)際問題中的數(shù)量關(guān)系,并用還有字母的式子表示出來。

在本章學(xué)習(xí)中,教師可以通過讓學(xué)生小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,初步培養(yǎng)學(xué)生觀察、分析、抽象、概括等思維能力和應(yīng)用意識(shí)。

第三章一元一次方程

一.知識(shí)框架

二.知識(shí)概念

1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.

2.一元一次方程的標(biāo)準(zhǔn)形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號(hào) …… 移項(xiàng) …… 合并同類項(xiàng) …… 系數(shù)化為1 …… (檢驗(yàn)方程的解).

4.列一元一次方程解應(yīng)用題:

(1)讀題分析法:………… 多用于“和,差,倍,分問題”

仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

(2)畫圖分析法: ………… 多用于“行程問題”

利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

11.列方程解應(yīng)用題的常用公式:

本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。

第四章圖形的認(rèn)識(shí)初步

一、知識(shí)框架

本章的主要內(nèi)容是圖形的初步認(rèn)識(shí),從生活周圍熟悉的物體入手,對物體的形狀的認(rèn)識(shí)從感性逐步上升到抽象的幾何圖形.通過從不同方向看立體圖形和展開立體圖形,初步認(rèn)識(shí)立體圖形與平面圖形的聯(lián)系.在此基礎(chǔ)上,認(rèn)識(shí)一些簡單的平面圖形——直線、射線、線段和角.

二、本章書涉及的數(shù)學(xué)思想:

1.分類討論思想。在過平面上若干個(gè)點(diǎn)畫直線時(shí),應(yīng)注意對這些點(diǎn)分情況討論;在畫圖形時(shí),應(yīng)注意圖形的各種可能性。

2.方程思想。在處理有關(guān)角的大小,線段大小的計(jì)算時(shí),常需要通過列方程來解決。

3.圖形變換思想。在研究角的概念時(shí),要充分體會(huì)對射線旋轉(zhuǎn)的認(rèn)識(shí)。在處理圖形時(shí)應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。

4.化歸思想。在進(jìn)行直線、線段、角以及相關(guān)圖形的計(jì)數(shù)時(shí),總要?jiǎng)潥w到公式n(n-1)/2的具體運(yùn)用上來。

七年級數(shù)學(xué)(下)知識(shí)點(diǎn)

人教版七年級數(shù)學(xué)下冊主要包括相交線與平行線、平面直角坐標(biāo)系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內(nèi)容。

第五章相交線與平行線

一、知識(shí)框架

二、知識(shí)概念

1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

2.對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對頂角。

3.垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

5.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

內(nèi)錯(cuò)角:∠2與∠6像這樣的一對角叫做內(nèi)錯(cuò)角。

同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形(如下圖)這種移動(dòng)叫做平移平移變換,簡稱平移。

8.對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對應(yīng)點(diǎn)。

9.定理與性質(zhì)

對頂角的性質(zhì):對頂角相等。

10垂線的性質(zhì):

性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

11.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

12.平行線的性質(zhì):

性質(zhì)1:兩直線平行,同位角相等。

性質(zhì)2:兩直線平行,內(nèi)錯(cuò)角相等。

性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內(nèi)錯(cuò)角相等,兩直線平行。

判定3:同旁內(nèi)角相等,兩直線平行。

本章使學(xué)生了解在平面內(nèi)不重合的兩條直線相交與平行的兩種位置關(guān)系,研究了兩條直線相交時(shí)的形成的角的特征,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特征以及有關(guān)圖形平移變換的性質(zhì),利用平移設(shè)計(jì)一些優(yōu)美的圖案.重點(diǎn):垂線和它的性質(zhì),平行線的判定方法和它的性質(zhì),平移和它的性質(zhì),以及這些的組織運(yùn)用.難點(diǎn):探索平行線的條件和特征,平行線條件與特征的區(qū)別,運(yùn)用平移性質(zhì)探索圖形之間的平移關(guān)系,以及進(jìn)行圖案設(shè)計(jì)。

第六章平面直角坐標(biāo)系

一.知識(shí)框架

二.知識(shí)概念

1.有序數(shù)對:有順序的兩個(gè)數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b)

2.平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。

3.橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

4.坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)。

5.象限:兩條坐標(biāo)軸把平面分成四個(gè)部分,右上部分叫第一象限,按逆時(shí)針方向一次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限內(nèi)。

平面直角坐標(biāo)系是數(shù)軸由一維到二維的過渡,同時(shí)它又是學(xué)習(xí)函數(shù)的基礎(chǔ),起到承上啟下的作用。另外,平面直角坐標(biāo)系將平面內(nèi)的點(diǎn)與數(shù)結(jié)合起來,體現(xiàn)了數(shù)形結(jié)合的思想。掌握本節(jié)內(nèi)容對以后學(xué)習(xí)和生活有著積極的意義。教師在講授本章內(nèi)容時(shí)應(yīng)多從實(shí)際情形出發(fā),通過對平面上的點(diǎn)的位置確定發(fā)展學(xué)生創(chuàng)新能力和應(yīng)用意識(shí)。

第七章三角形

一.知識(shí)框架

二.知識(shí)概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

3.高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。

5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

6.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

7.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

9.多邊形的對角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線。

10.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

12.公式與性質(zhì)

三角形的內(nèi)角和:三角形的內(nèi)角和為180°

三角形外角的性質(zhì):

性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

多邊形的外角和:多邊形的內(nèi)角和為360°。

多邊形對角線的條數(shù):

(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個(gè)三角形。

(2)n邊形對角線數(shù)量公式n(n-3)/2

三角形是初中數(shù)學(xué)中幾何部分的基礎(chǔ)圖形,在學(xué)習(xí)過程中,教師應(yīng)該多鼓勵(lì)學(xué)生動(dòng)腦動(dòng)手,發(fā)現(xiàn)和探索其中的知識(shí)奧秘。注重培養(yǎng)學(xué)生正確的數(shù)學(xué)情操和幾何思維能力。

第八章 二元一次方程組

一.知識(shí)結(jié)構(gòu)圖

二、知識(shí)概念

1.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程組:把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。

3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個(gè)方程的公共解叫做二元一次方程組。

5.消元:將未知數(shù)的個(gè)數(shù)由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。

7.加減消元法:當(dāng)兩個(gè)方程中同一未知數(shù)的系數(shù)相反或相等時(shí),將兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),這種方法叫做加減消元法,簡稱加減法。

本章通過實(shí)例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養(yǎng)學(xué)生對概念的理解和完整性和深刻性,使學(xué)生掌握好二元一次方程組的兩種解法.重點(diǎn):二元一次方程組的解法,列二元一次方程組解決實(shí)際問題.難點(diǎn):二元一次方程組解決實(shí)際問題

第九章 不等式與不等式組

一.知識(shí)框架

二、知識(shí)概念

1.用符號(hào)“<”“>”“≤ ”“≥”表示大小關(guān)系的式子叫做不等式。

2.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

3.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成

6.了一個(gè)一元一次不等式組。

7.定理與性質(zhì)

不等式的性質(zhì):

不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。

不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

本章內(nèi)容要求學(xué)生經(jīng)歷建立一元一次不等式(組)這樣的數(shù)學(xué)模型并應(yīng)用它解決實(shí)際問題的過程,體會(huì)不等式(組)的特點(diǎn)和作用,掌握運(yùn)用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強(qiáng)創(chuàng)新精神和應(yīng)用數(shù)學(xué)的意識(shí)。

第十章 數(shù)據(jù)的收集、整理與描述

一.知識(shí)框架

二.知識(shí)概念

1.全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查。

2.抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計(jì)總體的調(diào)查方式稱為抽樣調(diào)查。

3.總體:要考察的全體對象稱為總體。

4.個(gè)體:組成總體的每一個(gè)考察對象稱為個(gè)體。

5.樣本:被抽取的所有個(gè)體組成一個(gè)樣本。

6.樣本容量:樣本中個(gè)體的數(shù)目稱為樣本容量。

7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個(gè)數(shù)為該組的頻數(shù)。

8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。

9.組數(shù)和組距:在統(tǒng)計(jì)數(shù)據(jù)時(shí),把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個(gè)數(shù)稱為組數(shù),每一組兩個(gè)端點(diǎn)的差叫做組距。

本章要求通過實(shí)際參與收集、整理、描述和分析數(shù)據(jù)的活動(dòng),經(jīng)歷統(tǒng)計(jì)的一般過程,感受統(tǒng)計(jì)在生活和生產(chǎn)中的作用,增強(qiáng)學(xué)習(xí)統(tǒng)計(jì)的興趣,初步建立統(tǒng)計(jì)的觀念,培養(yǎng)重視調(diào)查研究的良好習(xí)慣和科學(xué)態(tài)度。

八年級數(shù)學(xué)(上)知識(shí)點(diǎn)

人教版八年級上冊主要包括全等三角形、軸對稱、實(shí)數(shù)、一次函數(shù)和 整式的乘除與分解因式五個(gè)章節(jié)的內(nèi)容。

第十一章 全等三角形

一.知識(shí)框架

二.知識(shí)概念

1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運(yùn)動(dòng)(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。

2.全等三角形的性質(zhì):全等三角形的對應(yīng)角相等、對應(yīng)邊相等。

3.三角形全等的判定公理及推論有:

(1)“邊角邊”簡稱“SAS”

(2)“角邊角”簡稱“ASA”

(3)“邊邊邊”簡稱“SSS”

(4)“角角邊”簡稱“AAS”

(5)斜邊和直角邊相等的兩直角三角形(HL)。

4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。

5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).

在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的*思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到*的真正魅力。

第十二章 軸對稱

一.知識(shí)框架

二.知識(shí)概念

1.對稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.性質(zhì): (1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。

(2)角平分線上的點(diǎn)到角兩邊距離相等。

(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。

(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。

3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對等角)

4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

5.等腰三角形的判定:等角對等邊。

6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,

7.等邊三角形的判定: 三個(gè)角都相等的三角形是等腰三角形。

有一個(gè)角是60°的等腰三角形是等邊三角形

有兩個(gè)角是60°的三角形是等邊三角形。

8.直角三角形中,30°角所對的直角邊等于斜邊的一半。

9.直角三角形斜邊上的中線等于斜邊的一半。

本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。

第十三章 實(shí)數(shù)

一.知識(shí)框架

二.知識(shí)概念

    算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作√a 。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。

2.平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。

3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。

4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對值是它本身,一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0

實(shí)數(shù)部分主要要求學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng),能估算無理數(shù)的大??;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。

第十四章 一次函數(shù)

一.知識(shí)框架

二.知識(shí)概念

1.一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。

3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大; 當(dāng)k<0時(shí),y隨x的增大而減小。<>

4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法

一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識(shí)的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問題出發(fā),引出變量,從具體到抽象的認(rèn)識(shí)事物。培養(yǎng)學(xué)生良好的變化與對應(yīng)意識(shí),體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂趣。

第十五章 整式的乘除與分解因式

一.知識(shí)概念

3. 整式的乘法

(1) 單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。

(2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

(3)多項(xiàng)式與多項(xiàng)式相乘

多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

4.平方差公式:

5.完全平方公式:

6. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即

(a≠0,m、n都是正數(shù),且m>n).

在應(yīng)用時(shí)需要注意以下幾點(diǎn):

①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.

②任何不等于0的數(shù)的0次冪等于1,即

.

③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即

( a≠0,p是正整數(shù))

而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的; 當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如<>

④運(yùn)算要注意運(yùn)算順序.

7.整式的除法

單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

多項(xiàng)式除以單項(xiàng)式: 多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.

8.分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

分解因式的一般方法:

①提公共因式法 ②運(yùn)用公式法 ③十字相乘法

分解因式的步驟:

(1)先看各項(xiàng)有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;

(4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;

(5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.

整式的乘除與分解因式這章內(nèi)容知識(shí)點(diǎn)較多,表面看來零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動(dòng),培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡潔美、和諧美,提高做題效率。

八年級數(shù)學(xué)(下)知識(shí)點(diǎn)

人教版八年級下冊主要包括了分式、反比例函數(shù)、勾股定理、四邊形、數(shù)據(jù)的分析五章內(nèi)容。

第十六章 分式

一.知識(shí)框架

二.知識(shí)概念

1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

2.分式有意義的條件:分母不等于0

3.約分:把一個(gè)分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。

4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。

分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C為整式,且C≠0)

5.最簡分式:一個(gè)分式的分子和分母沒有公因式時(shí),這個(gè)分式稱為最簡分式.約分時(shí),一般將一個(gè)分式化為最簡分式.

6.分式的四則運(yùn)算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c

2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算.用字母表示為:a/b±c/d=ad±cb/bd

3.分式的乘法法則:兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b * c/d=ac/bd

4.分式的除法法則:(1).兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc

(2).除以一個(gè)分式,等于乘以這個(gè)分式的倒數(shù):a/b÷c/d=a/b*d/c

7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.

8.分式方程的解法:①去分母(方程兩邊同時(shí)乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗(yàn)根(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根).

分式和分?jǐn)?shù)有著許多相似點(diǎn)。教師在講授本章內(nèi)容時(shí),可以對比分?jǐn)?shù)的特點(diǎn)及性質(zhì),讓學(xué)生自主學(xué)習(xí)。重點(diǎn)在于分式方程解實(shí)際應(yīng)用問題。

第十七章 反比例函數(shù)

一.知識(shí)框架

二.知識(shí)概念

3.性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減??;

當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。

4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。

在學(xué)習(xí)反比例函數(shù)時(shí),教師可讓學(xué)生對比之前所學(xué)習(xí)的一次函數(shù)啟發(fā)學(xué)生進(jìn)行對比性學(xué)習(xí)。在做題時(shí),培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。

第十八章勾股定理

一.知識(shí)框架

二 知識(shí)概念

1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。

勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個(gè)三角形是直角三角形。

2.定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理。

3.我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

勾股定理是直角三角形具備的重要性質(zhì)。本章要求學(xué)生在理解勾股定理的前提下,學(xué)會(huì)利用這個(gè)定理解決實(shí)際問題。可以通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受

第十九章四邊形

一.知識(shí)框架

二.知識(shí)概念

1.平行四邊形定義: 有兩組對邊分別平行的四邊形叫做平行四邊形。

2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。

3.平行四邊形的判定

①兩組對邊分別相等的四邊形是平行四邊形

②對角線互相平分的四邊形是平行四邊形;

③兩組對角分別相等的四邊形是平行四邊形;

④一組對邊平行且相等的四邊形是平行四邊形。

4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

5.直角三角形斜邊上的中線等于斜邊的一半。

6.矩形的定義:有一個(gè)角是直角的平行四邊形。

7.矩形的性質(zhì): 矩形的四個(gè)角都是直角;矩形的對角線平分且相等。AC=BD

8.矩形判定定理:

①有一個(gè)角是直角的平行四邊形叫做矩形。

②對角線相等的平行四邊形是矩形。

③有三個(gè)角是直角的四邊形是矩形。

9.菱形的定義 :鄰邊相等的平行四邊形。

10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

11.菱形的判定定理:

①一組鄰邊相等的平行四邊形是菱形。

②對角線互相垂直的平行四邊形是菱形。

③四條邊相等的四邊形是菱形。

12.S菱形=1/2×ab(a、b為兩條對角線)

13.正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

14.正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。 正方形既是矩形,又是菱形。

15.正方形判定定理:

①鄰邊相等的矩形是正方形。

②有一個(gè)角是直角的菱形是正方形。

16.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

17.直角梯形的定義:有一個(gè)角是直角的梯形

18.等腰梯形的定義:兩腰相等的梯形。

19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對角線相等。

20.等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。

本章內(nèi)容是對平面上四邊形的分類及性質(zhì)上的研究,要求學(xué)生在學(xué)習(xí)過程中多動(dòng)手多動(dòng)腦,把自己的發(fā)現(xiàn)和知識(shí)帶入做題中。因此教師在教學(xué)時(shí)可以多鼓勵(lì)學(xué)生自己總結(jié)四邊形的特點(diǎn),這樣有利于學(xué)生對知識(shí)的把握。

第二十章 數(shù)據(jù)的分析

一.知識(shí)框架

二.知識(shí)概念

1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計(jì)算公式。 權(quán)的理解:反映了某個(gè)數(shù)據(jù)在整個(gè)數(shù)據(jù)中的重要程度。

2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

3. 眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

4. 極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

5.方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。

本章內(nèi)容要求學(xué)生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學(xué)生的統(tǒng)計(jì)意識(shí)和數(shù)據(jù)處理的方法與能力。在教學(xué)過程中,以生活實(shí)例為主,讓學(xué)生體會(huì)到數(shù)據(jù)在生活中的重要性。

九年級數(shù)學(xué)(上)知識(shí)點(diǎn)

人教版九年級數(shù)學(xué)上冊主要包括了二次根式、二元一次方程、旋轉(zhuǎn)、圓和概率五個(gè)章節(jié)的內(nèi)容。

第二十一章 二次根式

一.知識(shí)框架

二.知識(shí)概念

二次根式:一般地,形如√?。╝≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,其中√0=0

對于本章內(nèi)容,教學(xué)中應(yīng)達(dá)到以下幾方面要求:

1. 理解二次根式的概念,了解被開方數(shù)必須是非負(fù)數(shù)的理由;

2. 了解最簡二次根式的概念;

3. 理解并掌握下列結(jié)論:

4. 掌握二次根式的加、減、乘、除運(yùn)算法則,會(huì)用它們進(jìn)行有關(guān)實(shí)數(shù)的簡單四則運(yùn)算;

5. 了解代數(shù)式的概念,進(jìn)一步體會(huì)代數(shù)式在表示數(shù)量關(guān)系方面的作用。

第二十二章 一元二次根式

一.知識(shí)框架

二.知識(shí)概念

一元二次方程:方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).

本章內(nèi)容主要要求學(xué)生在理解一元二次方程的前提下,通過解方程來解決一些實(shí)際問題。

(1)運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程;領(lǐng)會(huì)降次──轉(zhuǎn)化的數(shù)學(xué)思想.

(2)配方法解一元二次方程的一般步驟:現(xiàn)將已知方程化為一般形式;化二次項(xiàng)系數(shù)為1;常數(shù)項(xiàng)移到右邊;方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程無實(shí)根.

介紹配方法時(shí),首先通過實(shí)際問題引出形如ax2=s的方程。這樣的方程可以化為更為簡單的形如x2=t的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說明如何解形如(mx十n)2=p的方程。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對于沒有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。

(3)一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定,因此:

解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a、b、c代入式子x=

就得到方程的根.(公式所出現(xiàn)的運(yùn)算,恰好包括了所學(xué)過的六中運(yùn)算,加、減、乘、除、乘方、開方,這體現(xiàn)了公式的統(tǒng)一性與和諧性。)這個(gè)式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.

第二十三章 旋轉(zhuǎn)

一.知識(shí)框架

二.知識(shí)概念

1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動(dòng),其中對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段的長度、對應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)

2.旋轉(zhuǎn)對稱中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。

3.中心對稱圖形與中心對稱:

中心對稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對稱圖形。

中心對稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對稱。

4.中心對稱的性質(zhì):

關(guān)于中心對稱的兩個(gè)圖形是全等形。

關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。

關(guān)于中心對稱的兩個(gè)圖形,對應(yīng)線段平行(或者在同一直線上)且相等。

本章內(nèi)容通過讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進(jìn)一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識(shí),在實(shí)際問題中體驗(yàn)數(shù)學(xué)的快樂,激發(fā)對學(xué)習(xí)學(xué)習(xí)。

第二十四章 圓

一.知識(shí)框架

二.知識(shí)概念

1.圓:平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。

2.圓弧*:圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

3.圓心角和圓周角:頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

4.內(nèi)心和外心:過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。

6.圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑稱為圓錐的母線。

7.圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r。

8.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

9.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。

10.切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。

11.切線的性質(zhì):(1)經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

13.有關(guān)定理:

平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。?/p>

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

14.圓的計(jì)算公式

    圓的周長C=2πr=πd

    圓的面積S=πr2;

    扇形弧長l=nπr/180

15.扇形面積S=π(R2-r2) 5.圓錐側(cè)面積S=πrl

第二十五章 概率

知識(shí)框架

本章內(nèi)容要求學(xué)生了解事件的可能性,在探究交流中學(xué)習(xí)體驗(yàn)概率在生活中的樂趣和實(shí)用性,學(xué)會(huì)計(jì)算概率。

九年級數(shù)學(xué)(下)知識(shí)點(diǎn)

人教版九年級數(shù)學(xué)下冊主要包括了二次函數(shù)、相似、銳角三角形、投影與視圖四個(gè)章節(jié)的內(nèi)容。

第二十六章 二次函數(shù)

一.知識(shí)框架

二..知識(shí)概念

二次函數(shù):一般地,自變量X和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。

2.二次函數(shù)的解析式三種形式。

4.增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大,

當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小。<>

5.二次函數(shù)圖像畫法:

勾畫草圖關(guān)鍵點(diǎn):

①開口方向 ②對稱軸 ③頂點(diǎn) ④與x軸交點(diǎn) ⑤與y軸交點(diǎn)

6.圖像平移步驟

(1)配方y(tǒng)=a(x-h)2+k,確定頂點(diǎn)(h,k)

(2)對x軸 左加右減;對y軸 上加下減。

7.二次函數(shù)的對稱性

二次函數(shù)是軸對稱圖形,有這樣一個(gè)結(jié)論:當(dāng)橫坐標(biāo)為x1, x2 其對應(yīng)的縱坐標(biāo)相等那么對稱軸

8.根據(jù)圖像判斷a,b,c的符號(hào)

(1)a ——開口方向

(2)b ——對稱軸與a 左同右異

9.二次函數(shù)與一元二次方程的關(guān)系

拋物線y=ax2+bx+c與x軸交點(diǎn)的橫坐標(biāo)x1, x2 是一元二次方程ax2 +bx+c=0(a≠0)的根。

拋物線y=ax2 +bx+c,當(dāng)y=0時(shí),拋物線便轉(zhuǎn)化為一元二次方程ax2 +bx+c=0

b2一4ac>0時(shí),一元二次方程有兩個(gè)不相等的實(shí)根,二次函數(shù)圖像與x軸有兩個(gè)交點(diǎn);

b2一4ac=0時(shí),一元二次方程有兩個(gè)相等的實(shí)根,二次函數(shù)圖像與x軸有一個(gè)交點(diǎn);

b2一4ac<0時(shí),一元二次方程有不等的實(shí)根,二次函數(shù)圖像與x軸沒有交點(diǎn)。<>

二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).教師在講解本章內(nèi)容時(shí)應(yīng)注重培養(yǎng)學(xué)生數(shù)形結(jié)合的思想和獨(dú)立思考問題的能力。

第二十八章 銳角三角函數(shù)

一.知識(shí)框架

二.知識(shí)概念

本章內(nèi)容使學(xué)生了解在直角三角形中,銳角的對邊與斜邊、鄰邊與斜邊、對邊與鄰邊、鄰邊對邊的比值是固定的;通過實(shí)例認(rèn)識(shí)正弦、余弦、正切、余切四個(gè)三角函數(shù)的定義。并能應(yīng)用這些概念解決一些實(shí)際問題。

第二十九章 投影與視圖

知識(shí)框架

以上就是好上學(xué)為大家?guī)淼某踔袛?shù)學(xué)知識(shí)框架圖歸納大全,希望能幫助到廣大考生!

標(biāo)簽:??

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2024 m.mojitoev.com All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號(hào)