好上學(xué),職校招生與學(xué)歷提升信息網(wǎng)。

分站導(dǎo)航

熱點(diǎn)關(guān)注

好上學(xué)在線報(bào)名

在線咨詢

8:00-22:00

當(dāng)前位置:

好上學(xué)

>

職校資訊

>

招生要求

初中數(shù)學(xué)知識(shí)點(diǎn)匯總,初中數(shù)學(xué)知識(shí)點(diǎn)整理

來(lái)源:好上學(xué) ??時(shí)間:2023-07-24

高考是一個(gè)是一場(chǎng)千軍萬(wàn)馬過(guò)獨(dú)木橋的戰(zhàn)役。面對(duì)高考,考生總是有很多困惑,什么時(shí)候開(kāi)始報(bào)名?高考體檢對(duì)報(bào)考專業(yè)有什么影響?什么時(shí)候填報(bào)志愿?怎么填報(bào)志愿?等等,為了幫助考生解惑,好上學(xué)整理了初中數(shù)學(xué)知識(shí)點(diǎn)匯總,初中數(shù)學(xué)知識(shí)點(diǎn)整理相關(guān)信息,供考生參考,一起來(lái)看一下吧
初中數(shù)學(xué)知識(shí)點(diǎn)匯總,初中數(shù)學(xué)知識(shí)點(diǎn)整理

初中數(shù)學(xué)知識(shí)的特點(diǎn),尤其是與小學(xué)數(shù)學(xué)有哪些不同,這樣你才能更有針對(duì)性的學(xué)習(xí)和提高。概括來(lái)說(shuō),初中數(shù)學(xué)比小學(xué)數(shù)學(xué),代數(shù)上是具體到抽象的一個(gè)飛躍,幾何上是從直觀感知到邏輯推理的提升。因此,數(shù)學(xué)的學(xué)習(xí)就要講究思維和方法,不能在通過(guò)大量的死記硬背題型和步驟來(lái)解決問(wèn)題。下面專注教育小編就來(lái)和大姐分享初中數(shù)學(xué)知識(shí)點(diǎn)匯總:

初中數(shù)學(xué)知識(shí)點(diǎn)匯總之1、一元一次方程根的情況

△=b2-4ac

當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根

初中數(shù)學(xué)知識(shí)點(diǎn)匯總之2、平行四邊形的性質(zhì):

① 兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

② 平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫他的對(duì)角線。

③ 平行四邊形的對(duì)邊/對(duì)角相等。

④平行四邊形的對(duì)角線互相平分。

菱形:①一組鄰邊相等的平行四邊形是菱形

②領(lǐng)心的四條邊相等,兩條對(duì)角線互相垂直平分,每一組對(duì)角線平分一組對(duì)角。

③判定條件:定義/對(duì)角線互相垂直的平行四邊形/四條邊都相等的四邊形。

矩形與正方形:

① 有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。

② 矩形的對(duì)角線相等,四個(gè)角都是直角。

③ 對(duì)角線相等的平行四邊形是矩形。

④ 正方形具有平行四邊形,矩形,菱形的一切性質(zhì)。

⑤一組鄰邊相等的矩形是正方形。

多邊形:

①N邊形的內(nèi)角和等于(N-2)180度

②多邊心內(nèi)角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做這個(gè)多邊形的外角,在每個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,他們的和叫做這個(gè)多邊形的內(nèi)角和(都等于360度)

平均數(shù):對(duì)于N個(gè)數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個(gè)N個(gè)數(shù)的算術(shù)平均數(shù),記為X

加權(quán)平均數(shù):一組數(shù)據(jù)里各個(gè)數(shù)據(jù)的重要程度未必相同,因而,在計(jì)算這組數(shù)據(jù)的平均數(shù)時(shí)往往給每個(gè)數(shù)據(jù)加一個(gè)權(quán),這就是加權(quán)平均數(shù)。

二、基本定理

1、過(guò)兩點(diǎn)有且只有一條直線

2、兩點(diǎn)之間線段最短

3、同角或等角的補(bǔ)角相等

4、同角或等角的余角相等

5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

7、平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內(nèi)錯(cuò)角相等,兩直線平行

11、同旁內(nèi)角互補(bǔ),兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內(nèi)錯(cuò)角相等

14、兩直線平行,同旁內(nèi)角互補(bǔ)

15、定理 三角形兩邊的和大于第三邊

16、推論 三角形兩邊的差小于第三邊

17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°

18、推論1 直角三角形的兩個(gè)銳角互余

19、推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

20、推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

22、邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的 兩個(gè)三角形全等

24、推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

25、邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

27、定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

28、定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的*

30、等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)

31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

34、等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

35、推論1 三個(gè)角都相等的三角形是等邊三角形

36、推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

38、直角三角形斜邊上的中線等于斜邊上的一半

39、定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

40、逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的*

42、定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

43、定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

44、定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

45、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

47、勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

48、定理 四邊形的內(nèi)角和等于360°

49、四邊形的外角和等于360°

50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

51、推論 任意多邊的外角和等于360°

52、平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等

53、平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等

54、推論 夾在兩條平行線間的平行線段相等

55、平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分

56、平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形

57、平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊 形是平行四邊形

58、平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形

59、平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形

60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角

61、矩形性質(zhì)定理2 矩形的對(duì)角線相等

62、矩形判定定理1 有三個(gè)角是直角的四邊形是矩形

63、矩形判定定理2 對(duì)角線相等的平行四邊形是矩形

64、菱形性質(zhì)定理1 菱形的四條邊都相等

65、菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

67、菱形判定定理1 四邊都相等的四邊形是菱形

68、菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形

69、正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等

70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

71、定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

72、定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分

73、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等

75、等腰梯形的兩條對(duì)角線相等

76、等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯 形是等腰梯形

77、對(duì)角線相等的梯形是等腰梯形

78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79、推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

80、推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h

83、(1)比例的基本性質(zhì):

如果a:b=c:d,那么ad=bc

如果 ad=bc ,那么a:b=c:d

84、(2)合比性質(zhì):

如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性質(zhì):

如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

87、推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

88、定理 如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

89、平行于三角形的一邊,并且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

91、相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

93、判定定理2 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)

94、判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

95、定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

96、性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

97、性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比

98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方

99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的*

102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的*

103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的*

104、同圓或等圓的半徑相等

105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

109、定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。

110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

111、推論1

①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

112、推論2 圓的兩條平行弦所夾的弧相等

113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

114、定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

115、推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

116、定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

117、推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

118、推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

120、定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

121、①直線L和⊙O相交 d﹤r

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d﹥r(jià)

122、切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

124、推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

125、推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

126、切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

127、圓的外切四邊形的兩組對(duì)邊的和相等

128、弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角

129、推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

130、相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

132、切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

133、推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條 割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

135、①兩圓外離 d﹥R+r

②兩圓外切 d=R+r

③兩圓相交 R-r﹤d﹤R+r(R﹥r(jià))

④兩圓內(nèi)切 d=R-r(R﹥r(jià))

⑤兩圓內(nèi)含 d﹤R-r(R﹥r(jià))

136、定理 相交兩圓的連心線垂直平分兩圓的公共弦

137、定理 把圓分成n(n≥3):

⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

138、定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)

142、正三角形面積√3a/4 a表示邊長(zhǎng)

143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144、弧長(zhǎng)計(jì)算公式:L=n兀R/180

145、扇形面積公式:S扇形=n兀R^2/360=LR/2

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2025 m.mojitoev.com All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號(hào)